Cell and gene therapy

Cell and gene therapy offers new approaches in personalized medicine, providing treatments for a range of diseases. This field combines cellular biology and genetic engineering to develop targeted therapies for previously difficult-to-treat conditions. It encompasses various techniques, including the modification of a patient's own cells to fight diseases, the introduction of functional genes to replace defective ones, and the use of gene-editing technologies to correct genetic abnormalities. These therapies show promise in treating genetic disorders, certain types of cancer, and some autoimmune diseases.

Cell and gene therapy

Cell and gene therapy offers new approaches in personalized medicine, providing treatments for a range of diseases. This field combines cellular biology and genetic engineering to develop targeted therapies for previously difficult-to-treat conditions. It encompasses various techniques, including the modification of a patient's own cells to fight diseases, the introduction of functional genes to replace defective ones, and the use of gene-editing technologies to correct genetic abnormalities. These therapies show promise in treating genetic disorders, certain types of cancer, and some autoimmune diseases.
INFORS HT solutions for cell and gene therapy

Cell and gene therapy development shaping future treatments

In cell and gene therapy, researchers work to identify and modify specific cell types and genes, creating potential therapeutic agents through extensive screening and optimization. As promising candidates emerge, attention shifts to translating these discoveries into viable treatments. This involves scaling up production, ensuring consistency in cellular and genetic manipulations, and developing manufacturing processes that meet regulatory standards. Throughout this progression, the industry continuously refines techniques for cell handling and genetic engineering, while also enhancing delivery methods and treatment efficacy.  


Cell and gene therapy challenges

Inline SVG icon

Maintain cell viability and function

Maintaining cell viability and function throughout production is a critical challenge in cell and gene therapy development. Cells are highly sensitive to environmental fluctuations, which can significantly impact their survival, proliferation, and therapeutic potential. Even minor deviations in temperature, pH, or oxygen levels can lead to reduced cell viability, altered gene expression, or compromised functionality. This challenge is particularly acute during long-term cultures, scale-up processes, and complex genetic modification procedures. Ensuring consistent optimal conditions across various production stages maintains product quality, efficacy, and safety, yet it remains a significant hurdle in the field.

Inline SVG icon

Achieving precise genetic modifications

Achieving precise genetic modifications is a fundamental challenge in cell and gene therapy development. The success of genetic engineering processes relies heavily on maintaining consistent and reproducible cultivation environments. Variations in culture conditions can significantly affect cell behavior, gene expression, and the efficiency of genetic modification techniques. Precise control over factors such as temperature, pH, nutrient availability, and oxygen levels is crucial throughout the genetic modification process. These parameters can influence cellular stress responses, metabolic activity, and the expression of genes involved in DNA repair and recombination. Even minor fluctuations in these conditions can lead to unpredictable outcomes, potentially affecting the accuracy and efficiency of gene editing or insertion.

Inline SVG icon

Cost management

Developing cost-effective production methods remains a significant challenge in cell and gene therapy manufacturing. The complexity of these therapies often results in high production costs, which can limit their accessibility and commercial viability. Inefficient processes, resource-intensive workflows, and the need for specialized equipment and materials all contribute to elevated expenses. Optimizing resource utilization is necessary for reducing costs. This includes minimizing waste of expensive culture media and reagents, maximizing cell yields, and improving the efficiency of genetic modification processes. Streamlining workflows can significantly impact production timelines and labor costs, which are substantial factors in overall expenses.

Inline SVG icon

Maintain cell viability and function

Maintaining cell viability and function throughout production is a critical challenge in cell and gene therapy development. Cells are highly sensitive to environmental fluctuations, which can significantly impact their survival, proliferation, and therapeutic potential. Even minor deviations in temperature, pH, or oxygen levels can lead to reduced cell viability, altered gene expression, or compromised functionality. This challenge is particularly acute during long-term cultures, scale-up processes, and complex genetic modification procedures. Ensuring consistent optimal conditions across various production stages maintains product quality, efficacy, and safety, yet it remains a significant hurdle in the field.

Inline SVG icon

Achieving precise genetic modifications

Achieving precise genetic modifications is a fundamental challenge in cell and gene therapy development. The success of genetic engineering processes relies heavily on maintaining consistent and reproducible cultivation environments. Variations in culture conditions can significantly affect cell behavior, gene expression, and the efficiency of genetic modification techniques. Precise control over factors such as temperature, pH, nutrient availability, and oxygen levels is crucial throughout the genetic modification process. These parameters can influence cellular stress responses, metabolic activity, and the expression of genes involved in DNA repair and recombination. Even minor fluctuations in these conditions can lead to unpredictable outcomes, potentially affecting the accuracy and efficiency of gene editing or insertion.

Inline SVG icon

Cost management

Developing cost-effective production methods remains a significant challenge in cell and gene therapy manufacturing. The complexity of these therapies often results in high production costs, which can limit their accessibility and commercial viability. Inefficient processes, resource-intensive workflows, and the need for specialized equipment and materials all contribute to elevated expenses. Optimizing resource utilization is necessary for reducing costs. This includes minimizing waste of expensive culture media and reagents, maximizing cell yields, and improving the efficiency of genetic modification processes. Streamlining workflows can significantly impact production timelines and labor costs, which are substantial factors in overall expenses.

INFORS HT solutions for cell and gene therapy


Incubator shaker

Multitron

The INFORS HT Multitron incubator shaker supports cell and gene therapy development processes. Its parallel processing capability facilitates screening and production, contributing to method development efficiency. The system's temperature control across trays aids in maintaining consistent cultivation environments, which supports experimental reproducibility. The Multitron's design includes features that help reduce contamination risks and simplify cleaning, assisting in environment control during extended cultivation periods. These attributes contribute to research and development processes in cell and gene therapy. 

Incubator shaker

Minitron

The INFORS HT Minitron incubator shaker addresses cell and gene therapy development challenges in early-stage research. Its compact design suits small-scale experiments and initial protocol optimization. The Minitron provides consistent environmental control, supporting reproducible conditions for cell cultivation and preliminary genetic modification processes. Its efficient operation and contamination-resistant features contribute to reliable results in small-batch production.  

Now Available On-Demand

Perfecting HEK293 Cells for Gene Therapy - The Role of Incubator Flexibility

Unlock the secrets to optimizing HEK 293 cell cultures for gene therapy applications in our latest webinar. Discover how the flexibility of incubators plays a vital role in maximizing viral vector production. Watch now to explore:

  • The importance of HEK 293 cells in gene therapy.
  • Customizable incubator parameters that optimize growth conditions.
  • The influence of humidity, temperature, and orbital diameter on production efficiency.

Related articles

See all
05 Dec 20243 min read0
Back to Basics: Understanding UV decontamination in incubator shakers

Maintaining a sterile environment is essential in bioprocess laboratories, particularly when working with sensitive cell cultures or microbial samples. Contamination not only jeopardizes experimental results, but it can also lead to costly downtime and wasted resources. In this first installment of our Back to Basics blog series, we focus on the role of UV decontamination in incubator shakers and how it serves as an effective risk mitigation strategy. 

25 Nov 202438 min read
Cell-free gene expression in bioprinted fluidic networks

Researchers from the School of Natural Sciences at TU Munich utilized the Minifors bench-top bioreactor to support their innovative experiment on cell-free gene expression in bioprinted fluidic networks. This study highlights how integrating cell-free protein synthesis into vascularized hydrogels enables dynamic molecular control, providing valuable insights for creating synthetic biomaterials that mimic biological functions.

25 Nov 202433 min read
Production and evaluation of a new set of recombinant antigens for the serological diagnosis of human cysticercosis

Researchers from the Department of Parasitology-Mycology at Institut Pasteur de Côte d'Ivoire are exploring new solutions for diagnosing human cysticercosis in remote areas. Their study tested a set of recombinant antigens for use in ELISA assays as a low-cost alternative to neuroimaging. While some challenges remain in optimizing sensitivity, the results show great promise, particularly in regions with limited medical resources. These antigens could provide a crucial screening tool for detecting neurocysticercosis, especially in patients with epilepsy, helping those in remote areas access better diagnosis and care.

05 Dec 20243 min read0
Back to Basics: Understanding UV decontamination in incubator shakers

Maintaining a sterile environment is essential in bioprocess laboratories, particularly when working with sensitive cell cultures or microbial samples. Contamination not only jeopardizes experimental results, but it can also lead to costly downtime and wasted resources. In this first installment of our Back to Basics blog series, we focus on the role of UV decontamination in incubator shakers and how it serves as an effective risk mitigation strategy. 

25 Nov 202438 min read
Cell-free gene expression in bioprinted fluidic networks

Researchers from the School of Natural Sciences at TU Munich utilized the Minifors bench-top bioreactor to support their innovative experiment on cell-free gene expression in bioprinted fluidic networks. This study highlights how integrating cell-free protein synthesis into vascularized hydrogels enables dynamic molecular control, providing valuable insights for creating synthetic biomaterials that mimic biological functions.

25 Nov 202433 min read
Production and evaluation of a new set of recombinant antigens for the serological diagnosis of human cysticercosis

Researchers from the Department of Parasitology-Mycology at Institut Pasteur de Côte d'Ivoire are exploring new solutions for diagnosing human cysticercosis in remote areas. Their study tested a set of recombinant antigens for use in ELISA assays as a low-cost alternative to neuroimaging. While some challenges remain in optimizing sensitivity, the results show great promise, particularly in regions with limited medical resources. These antigens could provide a crucial screening tool for detecting neurocysticercosis, especially in patients with epilepsy, helping those in remote areas access better diagnosis and care.

Consult with our experts

Interested to learn how INFORS HT technologies could help optimize your cell and gene therapies? Reach out to us today.

We care about your privacy

We use cookies to improve user experience. We analyse our traffic, we personalise content and ads on our website, and we provide social media features. Certain cookies are necessary for our website to work properly and to enable you to use its features. With your consent, we also use analytics cookies to improve our website and marketing cookies to display advertisements and content on our website. 
Cookie settings