Cell culture
Cell culture
Cell culture techniques across biotechnology applications
Cell culture techniques play a crucial role in advancing biotechnology across various sectors. These methods are essential for developing new drugs, producing biologics, and advancing cell and gene therapies in the biopharmaceutical industry. Life sciences benefit from cell culture in stem cell research and disease modeling. The food industry applies similar approaches to create cultured meat alternatives, addressing sustainability challenges. Environmental applications include culturing plant cells to enhance phytoremediation processes for pollutant removal. Additionally, cell culture is fundamental in producing monoclonal antibodies and cell-based vaccines, contributing to advancements in healthcare and immunology. These diverse applications demonstrate how cell culture techniques drive innovation and solve complex challenges in multiple fields, from medicine and biotechnology to environmental science and sustainable food production.
Cell culture challenges
Contamination prevention
Cell culture techniques require stringent measures to prevent microbial contamination. Proper aseptic techniques, sterile equipment, and controlled environments are essential to maintain culture integrity. Regular testing and implementation of contamination control protocols help ensure reliable results across applications.
Reproducibility
Consistent and reproducible cell culture results are crucial for research validity and scalability. Standardized protocols, well-documented procedures, and quality control measures help maintain consistency across experiments and production batches. Implementing robust record-keeping systems and utilizing validated cell lines contribute to reproducibility. Regular calibration of equipment and standardization of reagents also play key roles.
Precise monitoring and control
Successful cell culture relies on careful regulation of environmental factors. Advanced monitoring systems and control mechanisms allow for the maintenance of optimal conditions, including temperature, pH, oxygen levels, and nutrient concentrations. These systems can be tailored to specific cell types and research objectives. Real-time data collection and automated adjustments help maintain stable culture conditions throughout experiments or production runs.
Contamination prevention
Cell culture techniques require stringent measures to prevent microbial contamination. Proper aseptic techniques, sterile equipment, and controlled environments are essential to maintain culture integrity. Regular testing and implementation of contamination control protocols help ensure reliable results across applications.
Reproducibility
Consistent and reproducible cell culture results are crucial for research validity and scalability. Standardized protocols, well-documented procedures, and quality control measures help maintain consistency across experiments and production batches. Implementing robust record-keeping systems and utilizing validated cell lines contribute to reproducibility. Regular calibration of equipment and standardization of reagents also play key roles.
Precise monitoring and control
Successful cell culture relies on careful regulation of environmental factors. Advanced monitoring systems and control mechanisms allow for the maintenance of optimal conditions, including temperature, pH, oxygen levels, and nutrient concentrations. These systems can be tailored to specific cell types and research objectives. Real-time data collection and automated adjustments help maintain stable culture conditions throughout experiments or production runs.
Advanced bioprocessing applications
Cell culture techniques drive progress in cutting-edge biomedical fields. This includes cell and gene therapies, stem cell research, monoclonal antibody production, and cell-based vaccine development. These applications leverage advanced bioprocessing methods to address complex health challenges and develop innovative treatments.
Cell and gene therapy
Cell culture techniques are fundamental in developing and producing cell and gene therapies. These methods enable the modification, expansion, and characterization of therapeutic cells. Precise culture conditions are crucial for maintaining cell viability and function throughout the manufacturing process, ensuring the quality and efficacy of the final product.
Stem cell research
Cell culture techniques are essential in stem cell research, supporting the study of embryonic, adult, and induced pluripotent stem cells. These methods enable the isolation, expansion, and precise differentiation of stem cells into specific lineages. Carefully controlled culture environments maintain stem cell properties and guide their development, facilitating advancements in disease modeling, drug development, and regenerative medicine applications.
Monoclonal antibody production
The production of monoclonal antibodies relies heavily on cell culture techniques. Hybridoma or recombinant cell lines are cultured in controlled bioreactor systems to express and secrete specific antibodies. Optimized culture conditions and feeding strategies are essential to maximize antibody yield and maintain product quality throughout the production process.
Cell-based vaccine production
Cell culture methods are critical in developing and manufacturing cell-based vaccines. These techniques allow for the propagation of viruses or the production of viral proteins in controlled, scalable systems. Cell culture approaches offer advantages in vaccine production speed, consistency, and adaptability compared to traditional egg-based methods.
Cell and gene therapy
Cell culture techniques are fundamental in developing and producing cell and gene therapies. These methods enable the modification, expansion, and characterization of therapeutic cells. Precise culture conditions are crucial for maintaining cell viability and function throughout the manufacturing process, ensuring the quality and efficacy of the final product.
Stem cell research
Cell culture techniques are essential in stem cell research, supporting the study of embryonic, adult, and induced pluripotent stem cells. These methods enable the isolation, expansion, and precise differentiation of stem cells into specific lineages. Carefully controlled culture environments maintain stem cell properties and guide their development, facilitating advancements in disease modeling, drug development, and regenerative medicine applications.
Monoclonal antibody production
The production of monoclonal antibodies relies heavily on cell culture techniques. Hybridoma or recombinant cell lines are cultured in controlled bioreactor systems to express and secrete specific antibodies. Optimized culture conditions and feeding strategies are essential to maximize antibody yield and maintain product quality throughout the production process.
Cell-based vaccine production
Cell culture methods are critical in developing and manufacturing cell-based vaccines. These techniques allow for the propagation of viruses or the production of viral proteins in controlled, scalable systems. Cell culture approaches offer advantages in vaccine production speed, consistency, and adaptability compared to traditional egg-based methods.
Overcoming scale-up challenges in CHO suspension cultures
In this application note, Matthew Drew, Eukaryotic Protein Expression Lead at Leidos Biomedical Research, Inc., and Dominic Esposito, Director of the Protein Expression Laboratory at Frederick National Laboratory for Cancer Research, detail an improved protocol, highlighting how the Thomson Optimum Growth® Flask from Thomson Instrument Company and Multitron incubator shaker were used to scale ExpiCHO™ Expression Systems up to 2L—enhancing efficiency and conserving space.
Related content
Related articles
See allIn bioprocessing, selecting the right shaker parameters is essential for optimizing the growth and productivity of various organisms, including bacteria, yeast, and mammalian cells. By fine-tuning these parameters, scientists can create ideal environments for cultivation, maximizing process efficiency and reproducibility. In this installment of our Back to Basics blog series, we focus on how INFORS HT incubator shakers enable better control and flexibility to meet diverse cultivation needs.
Researchers from the University of Delaware, Departments of Chemical and Biomolecular Engineering and Electrical and Computer Engineering have made strides in enhancing the resilience of Chinese hamster ovary (CHO) cells used in biopharmaceutical production. By employing the INFORS HT Multitron incubator shaker, they exposed CHO cells to stress conditions commonly encountered during manufacturing, such as elevated levels of ammonia, lactate, and osmolality. Through comprehensive transcriptomic analysis, the team identified 199 genes exhibiting bistable expression, with seven emerging as prime candidates for engineering stress-resistant cell lines. This research holds promise for optimizing cell health and boosting productivity in large-scale bioreactor operations.
Researchers from the University of Delaware's Department of Chemical and Biomolecular Engineering have developed a site-specific integration (SSI) system to streamline CHO cell line development for monoclonal antibody (mAb) production. Using the INFORS HT Multitron incubator shaker, they cultivated cells under optimized conditions to evaluate a recombinase-mediated cassette exchange (RMCE) system that enables high-throughput transgene selection without cell sorting. Their approach resulted in a 7- to 11-fold increase in mAb productivity, offering a faster and more reliable method for biopharmaceutical manufacturing.
In bioprocessing, selecting the right shaker parameters is essential for optimizing the growth and productivity of various organisms, including bacteria, yeast, and mammalian cells. By fine-tuning these parameters, scientists can create ideal environments for cultivation, maximizing process efficiency and reproducibility. In this installment of our Back to Basics blog series, we focus on how INFORS HT incubator shakers enable better control and flexibility to meet diverse cultivation needs.
Researchers from the University of Delaware, Departments of Chemical and Biomolecular Engineering and Electrical and Computer Engineering have made strides in enhancing the resilience of Chinese hamster ovary (CHO) cells used in biopharmaceutical production. By employing the INFORS HT Multitron incubator shaker, they exposed CHO cells to stress conditions commonly encountered during manufacturing, such as elevated levels of ammonia, lactate, and osmolality. Through comprehensive transcriptomic analysis, the team identified 199 genes exhibiting bistable expression, with seven emerging as prime candidates for engineering stress-resistant cell lines. This research holds promise for optimizing cell health and boosting productivity in large-scale bioreactor operations.
Researchers from the University of Delaware's Department of Chemical and Biomolecular Engineering have developed a site-specific integration (SSI) system to streamline CHO cell line development for monoclonal antibody (mAb) production. Using the INFORS HT Multitron incubator shaker, they cultivated cells under optimized conditions to evaluate a recombinase-mediated cassette exchange (RMCE) system that enables high-throughput transgene selection without cell sorting. Their approach resulted in a 7- to 11-fold increase in mAb productivity, offering a faster and more reliable method for biopharmaceutical manufacturing.