Cell culture

Cell culture, a cornerstone of bioprocessing, allows for the controlled growth and maintenance of cells outside their natural environments. This technique underpins advancements across multiple sectors, from studying cellular processes and developing new drugs in life sciences to creating alternative proteins in food technology. It also plays a crucial role in agricultural innovation and environmental research. Specialized equipment, such as bioreactors and incubation shakers, supports the diverse applications of cell culture, enabling researchers and manufacturers to advance their work in these important areas.

Cell culture

Cell culture, a cornerstone of bioprocessing, allows for the controlled growth and maintenance of cells outside their natural environments. This technique underpins advancements across multiple sectors, from studying cellular processes and developing new drugs in life sciences to creating alternative proteins in food technology. It also plays a crucial role in agricultural innovation and environmental research. Specialized equipment, such as bioreactors and incubation shakers, supports the diverse applications of cell culture, enabling researchers and manufacturers to advance their work in these important areas.
INFORS HT solutions for cell culture

Cell culture techniques across biotechnology applications 

Cell culture techniques play a crucial role in advancing biotechnology across various sectors. In life sciences, these methods are essential for developing cell and gene therapies and furthering stem cell research. The food industry applies similar approaches to create cultured meat alternatives, addressing sustainability challenges. Environmental applications include culturing plant cells to enhance phytoremediation processes for pollutant removal. Additionally, cell culture is fundamental in producing monoclonal antibodies and cell-based vaccines, contributing to advancements in healthcare. These diverse applications demonstrate how cell culture techniques are driving innovation and solving complex challenges in multiple fields. 

Cell culture challenges

Inline SVG icon

Contamination prevention

Cell culture techniques require stringent measures to prevent microbial contamination. Proper aseptic techniques, sterile equipment, and controlled environments are essential to maintain culture integrity. Regular testing and implementation of contamination control protocols help ensure reliable results across applications.

Inline SVG icon

Reproducibility 

Consistent and reproducible cell culture results are crucial for research validity and scalability. Standardized protocols, well-documented procedures, and quality control measures help maintain consistency across experiments and production batches. Implementing robust record-keeping systems and utilizing validated cell lines contribute to reproducibility. Regular calibration of equipment and standardization of reagents also play key roles.

Inline SVG icon

Precise monitoring and control

Successful cell culture relies on careful regulation of environmental factors. Advanced monitoring systems and control mechanisms allow for the maintenance of optimal conditions, including temperature, pH, oxygen levels, and nutrient concentrations. These systems can be tailored to specific cell types and research objectives. Real-time data collection and automated adjustments help maintain stable culture conditions throughout experiments or production runs.

Inline SVG icon

Contamination prevention

Cell culture techniques require stringent measures to prevent microbial contamination. Proper aseptic techniques, sterile equipment, and controlled environments are essential to maintain culture integrity. Regular testing and implementation of contamination control protocols help ensure reliable results across applications.

Inline SVG icon

Reproducibility 

Consistent and reproducible cell culture results are crucial for research validity and scalability. Standardized protocols, well-documented procedures, and quality control measures help maintain consistency across experiments and production batches. Implementing robust record-keeping systems and utilizing validated cell lines contribute to reproducibility. Regular calibration of equipment and standardization of reagents also play key roles.

Inline SVG icon

Precise monitoring and control

Successful cell culture relies on careful regulation of environmental factors. Advanced monitoring systems and control mechanisms allow for the maintenance of optimal conditions, including temperature, pH, oxygen levels, and nutrient concentrations. These systems can be tailored to specific cell types and research objectives. Real-time data collection and automated adjustments help maintain stable culture conditions throughout experiments or production runs.

Advanced bioprocessing applications 

Cell culture techniques drive progress in cutting-edge biomedical fields. This includes cell and gene therapies, stem cell research, monoclonal antibody production, and cell-based vaccine development. These applications leverage advanced bioprocessing methods to address complex health challenges and develop innovative treatments. 

Cell and gene therapy

Cell culture techniques are fundamental in developing and producing cell and gene therapies. These methods enable the modification, expansion, and characterization of therapeutic cells. Precise culture conditions are crucial for maintaining cell viability and function throughout the manufacturing process, ensuring the quality and efficacy of the final product.

Learn more

Stem cell research

Cell culture techniques are essential in stem cell research, supporting the study of embryonic, adult, and induced pluripotent stem cells. These methods enable the isolation, expansion, and precise differentiation of stem cells into specific lineages. Carefully controlled culture environments maintain stem cell properties and guide their development, facilitating advancements in disease modeling, drug development, and regenerative medicine applications.

Learn more

Monoclonal antibody production

The production of monoclonal antibodies relies heavily on cell culture techniques. Hybridoma or recombinant cell lines are cultured in controlled bioreactor systems to express and secrete specific antibodies. Optimized culture conditions and feeding strategies are essential to maximize antibody yield and maintain product quality throughout the production process.

Learn more

Cell-based vaccine production

Cell culture methods are critical in developing and manufacturing cell-based vaccines. These techniques allow for the propagation of viruses or the production of viral proteins in controlled, scalable systems. Cell culture approaches offer advantages in vaccine production speed, consistency, and adaptability compared to traditional egg-based methods.

Learn more

Cell and gene therapy

Cell culture techniques are fundamental in developing and producing cell and gene therapies. These methods enable the modification, expansion, and characterization of therapeutic cells. Precise culture conditions are crucial for maintaining cell viability and function throughout the manufacturing process, ensuring the quality and efficacy of the final product.

Learn more

Stem cell research

Cell culture techniques are essential in stem cell research, supporting the study of embryonic, adult, and induced pluripotent stem cells. These methods enable the isolation, expansion, and precise differentiation of stem cells into specific lineages. Carefully controlled culture environments maintain stem cell properties and guide their development, facilitating advancements in disease modeling, drug development, and regenerative medicine applications.

Learn more

Monoclonal antibody production

The production of monoclonal antibodies relies heavily on cell culture techniques. Hybridoma or recombinant cell lines are cultured in controlled bioreactor systems to express and secrete specific antibodies. Optimized culture conditions and feeding strategies are essential to maximize antibody yield and maintain product quality throughout the production process.

Learn more

Cell-based vaccine production

Cell culture methods are critical in developing and manufacturing cell-based vaccines. These techniques allow for the propagation of viruses or the production of viral proteins in controlled, scalable systems. Cell culture approaches offer advantages in vaccine production speed, consistency, and adaptability compared to traditional egg-based methods.

Learn more
New application note collaboration

Overcoming scale-up challenges in CHO suspension cultures

In this application note, Matthew Drew, Eukaryotic Protein Expression Lead at Leidos Biomedical Research, Inc., and Dominic Esposito, Director of the Protein Expression Laboratory at Frederick National Laboratory for Cancer Research, detail an improved protocol, highlighting how the Thomson Optimum Growth® Flask from Thomson Instrument Company and Multitron incubator shaker were used to scale ExpiCHO™ Expression Systems up to 2L—enhancing efficiency and conserving space.

Related articles

Blog
17 Jan. 20254 min read0
Back to Basics: What every scientist should know about their orbital throw

Selecting the correct orbital throw for your incubator shaker is critical for achieving optimal results in cell culture, bacterial growth, and other bioprocessing applications. In this installment of the Back to Basics series, we will explore what orbital throw is, why it matters, and how to make the best choice for your experiments.

06 Jan. 20253 min read0
Back to Basics: Understanding UV decontamination in incubator shakers

Maintaining a sterile environment is essential in bioprocess laboratories, particularly when working with sensitive cell cultures or microbial samples. Contamination not only jeopardizes experimental results, but it can also lead to costly downtime and wasted resources. In this first installment of our Back to Basics blog series, we focus on the role of UV decontamination in incubator shakers and how it serves as an effective risk mitigation strategy.

18 Dez. 202428 min read
Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells

Researchers at the University of Stuttgart discovered that blue LED light exposure can boost CHO cell productivity by 57%. Using the INFORS HT Minitron incubator shaker, they demonstrated how precise light optimization offers a simple, non-invasive approach to enhancing biopharmaceutical production. This breakthrough could enhance efficiency in bioreactors.

17 Jan. 20254 min read0
Back to Basics: What every scientist should know about their orbital throw

Selecting the correct orbital throw for your incubator shaker is critical for achieving optimal results in cell culture, bacterial growth, and other bioprocessing applications. In this installment of the Back to Basics series, we will explore what orbital throw is, why it matters, and how to make the best choice for your experiments.

06 Jan. 20253 min read0
Back to Basics: Understanding UV decontamination in incubator shakers

Maintaining a sterile environment is essential in bioprocess laboratories, particularly when working with sensitive cell cultures or microbial samples. Contamination not only jeopardizes experimental results, but it can also lead to costly downtime and wasted resources. In this first installment of our Back to Basics blog series, we focus on the role of UV decontamination in incubator shakers and how it serves as an effective risk mitigation strategy.

18 Dez. 202428 min read
Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells

Researchers at the University of Stuttgart discovered that blue LED light exposure can boost CHO cell productivity by 57%. Using the INFORS HT Minitron incubator shaker, they demonstrated how precise light optimization offers a simple, non-invasive approach to enhancing biopharmaceutical production. This breakthrough could enhance efficiency in bioreactors.

Consult with our experts

Interested to learn how INFORS HT technologies could help optimize your cell culture processes? Reach out to us today.

Ihre Privatsphäre ist uns wichtig

Wir verwenden Cookies, um die Nutzererfahrung zu verbessern. Wir analysieren unseren Datenverkehr, wir personalisieren Inhalte und Anzeigen auf unserer Website und wir bieten Funktionen für soziale Medien. Bestimmte Cookies sind notwendig, damit unsere Website ordnungsgemäß funktioniert und Sie ihre Funktionen nutzen können. Mit Ihrer Zustimmung verwenden wir auch Analyse-Cookies zur Verbesserung unserer Website und Marketing-Cookies, um Werbung und Inhalte auf unserer Website anzuzeigen.
Cookie Einstellungen