Cell culture

Cell culture, a cornerstone of bioprocessing, allows for the controlled growth and maintenance of cells outside their natural environments. This technique underpins advancements across multiple sectors, from studying cellular processes and developing new drugs in life sciences to creating alternative proteins in food technology. It also plays a crucial role in agricultural innovation and environmental research. Specialized equipment, such as bioreactors and incubation shakers, supports the diverse applications of cell culture, enabling researchers and manufacturers to advance their work in these important areas.

Cell culture

Cell culture, a cornerstone of bioprocessing, allows for the controlled growth and maintenance of cells outside their natural environments. This technique underpins advancements across multiple sectors, from studying cellular processes and developing new drugs in life sciences to creating alternative proteins in food technology. It also plays a crucial role in agricultural innovation and environmental research. Specialized equipment, such as bioreactors and incubation shakers, supports the diverse applications of cell culture, enabling researchers and manufacturers to advance their work in these important areas.
INFORS HT solutions for cell culture

Cell culture techniques across biotechnology applications 

Cell culture techniques play a crucial role in advancing biotechnology across various sectors. In life sciences, these methods are essential for developing cell and gene therapies and furthering stem cell research. The food industry applies similar approaches to create cultured meat alternatives, addressing sustainability challenges. Environmental applications include culturing plant cells to enhance phytoremediation processes for pollutant removal. Additionally, cell culture is fundamental in producing monoclonal antibodies and cell-based vaccines, contributing to advancements in healthcare. These diverse applications demonstrate how cell culture techniques are driving innovation and solving complex challenges in multiple fields. 

Cell culture challenges

Inline SVG icon

Contamination prevention

Cell culture techniques require stringent measures to prevent microbial contamination. Proper aseptic techniques, sterile equipment, and controlled environments are essential to maintain culture integrity. Regular testing and implementation of contamination control protocols help ensure reliable results across applications.

Inline SVG icon

Reproducibility 

Consistent and reproducible cell culture results are crucial for research validity and scalability. Standardized protocols, well-documented procedures, and quality control measures help maintain consistency across experiments and production batches. Implementing robust record-keeping systems and utilizing validated cell lines contribute to reproducibility. Regular calibration of equipment and standardization of reagents also play key roles.

Inline SVG icon

Precise monitoring and control

Successful cell culture relies on careful regulation of environmental factors. Advanced monitoring systems and control mechanisms allow for the maintenance of optimal conditions, including temperature, pH, oxygen levels, and nutrient concentrations. These systems can be tailored to specific cell types and research objectives. Real-time data collection and automated adjustments help maintain stable culture conditions throughout experiments or production runs.

Inline SVG icon

Contamination prevention

Cell culture techniques require stringent measures to prevent microbial contamination. Proper aseptic techniques, sterile equipment, and controlled environments are essential to maintain culture integrity. Regular testing and implementation of contamination control protocols help ensure reliable results across applications.

Inline SVG icon

Reproducibility 

Consistent and reproducible cell culture results are crucial for research validity and scalability. Standardized protocols, well-documented procedures, and quality control measures help maintain consistency across experiments and production batches. Implementing robust record-keeping systems and utilizing validated cell lines contribute to reproducibility. Regular calibration of equipment and standardization of reagents also play key roles.

Inline SVG icon

Precise monitoring and control

Successful cell culture relies on careful regulation of environmental factors. Advanced monitoring systems and control mechanisms allow for the maintenance of optimal conditions, including temperature, pH, oxygen levels, and nutrient concentrations. These systems can be tailored to specific cell types and research objectives. Real-time data collection and automated adjustments help maintain stable culture conditions throughout experiments or production runs.

Advanced bioprocessing applications 

Cell culture techniques drive progress in cutting-edge biomedical fields. This includes cell and gene therapies, stem cell research, monoclonal antibody production, and cell-based vaccine development. These applications leverage advanced bioprocessing methods to address complex health challenges and develop innovative treatments. 

Cell and gene therapy

Cell culture techniques are fundamental in developing and producing cell and gene therapies. These methods enable the modification, expansion, and characterization of therapeutic cells. Precise culture conditions are crucial for maintaining cell viability and function throughout the manufacturing process, ensuring the quality and efficacy of the final product.

Learn more

Stem cell research

Cell culture techniques are essential in stem cell research, supporting the study of embryonic, adult, and induced pluripotent stem cells. These methods enable the isolation, expansion, and precise differentiation of stem cells into specific lineages. Carefully controlled culture environments maintain stem cell properties and guide their development, facilitating advancements in disease modeling, drug development, and regenerative medicine applications.

Learn more

Monoclonal antibody production

The production of monoclonal antibodies relies heavily on cell culture techniques. Hybridoma or recombinant cell lines are cultured in controlled bioreactor systems to express and secrete specific antibodies. Optimized culture conditions and feeding strategies are essential to maximize antibody yield and maintain product quality throughout the production process.

Learn more

Cell-based vaccine production

Cell culture methods are critical in developing and manufacturing cell-based vaccines. These techniques allow for the propagation of viruses or the production of viral proteins in controlled, scalable systems. Cell culture approaches offer advantages in vaccine production speed, consistency, and adaptability compared to traditional egg-based methods.

Learn more

Cell and gene therapy

Cell culture techniques are fundamental in developing and producing cell and gene therapies. These methods enable the modification, expansion, and characterization of therapeutic cells. Precise culture conditions are crucial for maintaining cell viability and function throughout the manufacturing process, ensuring the quality and efficacy of the final product.

Learn more

Stem cell research

Cell culture techniques are essential in stem cell research, supporting the study of embryonic, adult, and induced pluripotent stem cells. These methods enable the isolation, expansion, and precise differentiation of stem cells into specific lineages. Carefully controlled culture environments maintain stem cell properties and guide their development, facilitating advancements in disease modeling, drug development, and regenerative medicine applications.

Learn more

Monoclonal antibody production

The production of monoclonal antibodies relies heavily on cell culture techniques. Hybridoma or recombinant cell lines are cultured in controlled bioreactor systems to express and secrete specific antibodies. Optimized culture conditions and feeding strategies are essential to maximize antibody yield and maintain product quality throughout the production process.

Learn more

Cell-based vaccine production

Cell culture methods are critical in developing and manufacturing cell-based vaccines. These techniques allow for the propagation of viruses or the production of viral proteins in controlled, scalable systems. Cell culture approaches offer advantages in vaccine production speed, consistency, and adaptability compared to traditional egg-based methods.

Learn more

Related content

Related articles

Blog
02 Juli 20245 min read0
5 ways to increase biomass in your shake flasks

The shake flask is the standard in many laboratories for cultivation of cells. Achieving high biomass concentrations remains a constant challenge in these labs. Let us show you 5 tricks you can implement with a bonus webinar at the end of this article.

02 Juli 20248 min read0
Everything you ever wanted to know about cell culture process transfer

Mammalian cell culture bioprocesses are gaining importance in the biopharmaceutical industry. Due to the high depamd of product quality, the indubator shaker as a production unit can become a limited factor after a certain point. Learn how to overcome this limitation and watch the full webinar at the end of this article.

02 Juli 20246 min read0
The impeller: Why it could be called the heart of the bioreactor

The impeller, also known as agitator, is a key component of the bioreactor. It performs the important tasks of mixing, aeration, heat and mass transfer within the vessel. Learn about the different characteristics of various types of impeller and the importance of their designs.

02 Juli 20245 min read0
5 ways to increase biomass in your shake flasks

The shake flask is the standard in many laboratories for cultivation of cells. Achieving high biomass concentrations remains a constant challenge in these labs. Let us show you 5 tricks you can implement with a bonus webinar at the end of this article.

02 Juli 20248 min read0
Everything you ever wanted to know about cell culture process transfer

Mammalian cell culture bioprocesses are gaining importance in the biopharmaceutical industry. Due to the high depamd of product quality, the indubator shaker as a production unit can become a limited factor after a certain point. Learn how to overcome this limitation and watch the full webinar at the end of this article.

02 Juli 20246 min read0
The impeller: Why it could be called the heart of the bioreactor

The impeller, also known as agitator, is a key component of the bioreactor. It performs the important tasks of mixing, aeration, heat and mass transfer within the vessel. Learn about the different characteristics of various types of impeller and the importance of their designs.

Consult with our experts

Interested to learn how INFORS HT technologies could help optimize your cell culture processes? Reach out to us today.

Ihre Privatsphäre ist uns wichtig

Wir verwenden Cookies, um die Nutzererfahrung zu verbessern. Wir analysieren unseren Datenverkehr, wir personalisieren Inhalte und Anzeigen auf unserer Website und wir bieten Funktionen für soziale Medien. Bestimmte Cookies sind notwendig, damit unsere Website ordnungsgemäß funktioniert und Sie ihre Funktionen nutzen können. Mit Ihrer Zustimmung verwenden wir auch Analyse-Cookies zur Verbesserung unserer Website und Marketing-Cookies, um Werbung und Inhalte auf unserer Website anzuzeigen.
Cookie Einstellungen