Applied industries and applications

Discover how bioprocessing technologies drive innovation across diverse sectors, from advancing life science research to enhancing food production and promoting environmental sustainability. Our solutions empower breakthrough therapies, enable cutting-edge vaccine development, and fuel advancements in stem cell research. By bridging scientific ingenuity with practical applications, we're accelerating bioprocess development and optimizing production for a wide range of industries.

Applied industries and applications

Discover how bioprocessing technologies drive innovation across diverse sectors, from advancing life science research to enhancing food production and promoting environmental sustainability. Our solutions empower breakthrough therapies, enable cutting-edge vaccine development, and fuel advancements in stem cell research. By bridging scientific ingenuity with practical applications, we're accelerating bioprocess development and optimizing production for a wide range of industries.
Applied industries and applications

Applied industries

Life science research

Life science research is a dynamic field that includes biotechnology, microbiology, and pharmaceutical development. Researchers delve into cellular functions, genetic analysis, and medical treatments to drive innovation and scientific progress. Integrating cutting-edge technology and advanced laboratory instruments, this research fosters groundbreaking discoveries and advancements in health and medicine.

Food and beverage

The food and beverage industry encompasses the production, processing, and distribution of consumable goods, ranging from fresh produce to packaged snacks and beverages.

Agriculture and environmental

The agricultural and environmental sectors are pivotal for global sustainability and food security. Agriculture encompasses crop cultivation, livestock farming, and agribusiness, aiming to optimize yields while minimizing environmental harm. Concurrently, the environmental sector addresses conservation, pollution control, and sustainable resource management, crucial for ecosystem preservation and climate change mitigation. These sectors play a vital role in fostering a sustainable future, ensuring the well-being of both people and the planet.

Life science research

Life science research is a dynamic field that includes biotechnology, microbiology, and pharmaceutical development. Researchers delve into cellular functions, genetic analysis, and medical treatments to drive innovation and scientific progress. Integrating cutting-edge technology and advanced laboratory instruments, this research fosters groundbreaking discoveries and advancements in health and medicine.

Food and beverage

The food and beverage industry encompasses the production, processing, and distribution of consumable goods, ranging from fresh produce to packaged snacks and beverages.

Agriculture and environmental

The agricultural and environmental sectors are pivotal for global sustainability and food security. Agriculture encompasses crop cultivation, livestock farming, and agribusiness, aiming to optimize yields while minimizing environmental harm. Concurrently, the environmental sector addresses conservation, pollution control, and sustainable resource management, crucial for ecosystem preservation and climate change mitigation. These sectors play a vital role in fostering a sustainable future, ensuring the well-being of both people and the planet.

Applications

Monoclonal antibody production

The production of monoclonal antibodies relies heavily on cell culture techniques. Hybridoma or recombinant cell lines are cultured in controlled bioreactor systems to express and secrete specific antibodies. Optimized culture conditions and feeding strategies are essential to maximize antibody yield and maintain product quality throughout the production process.

Cell and gene therapy

Cell culture techniques are fundamental in developing and producing cell and gene therapies. These methods enable the modification, expansion, and characterization of therapeutic cells. Precise culture conditions are crucial for maintaining cell viability and function throughout the manufacturing process, ensuring the quality and efficacy of the final product.

Stem cell research

Cell culture techniques are essential in stem cell research, supporting the study of embryonic, adult, and induced pluripotent stem cells. These methods enable the isolation, expansion, and precise differentiation of stem cells into specific lineages. Carefully controlled culture environments maintain stem cell properties and guide their development, facilitating advancements in disease modeling, drug development, and regenerative medicine applications.

Cell-based vaccine production

Cell culture methods are critical in developing and manufacturing cell-based vaccines. These techniques allow for the propagation of viruses or the production of viral proteins in controlled, scalable systems. Cell culture approaches offer advantages in vaccine production speed, consistency, and adaptability compared to traditional egg-based methods.

Bacterial-based vaccines

This approach uses bioprocessing to produce vaccines using bacterial systems. Researchers engineer bacteria to produce specific antigens or immunogenic components. The process involves optimizing bacterial growth conditions, antigen expression, and purification methods. Bacterial-based vaccines offer potential advantages in production speed and scalability.

Plasmid DNA production

Microbial bioprocessing enables the production of plasmid DNA, essential for genetic engineering and some vaccine development processes. This technique involves cultivating bacteria, typically E. coli, under controlled conditions to replicate and express specific DNA sequences. The process requires careful optimization of growth conditions, nutrient supply, and extraction methods to ensure high yield and purity of the plasmid DNA. This application supports various biotechnology and pharmaceutical research efforts.

Simultaneous Saccharification and Fermentation (SSF)

SSF is a bioprocessing technique that combines the breakdown of complex carbohydrates into simple sugars (saccharification) with the fermentation of these sugars in a single step. This process, often using engineered microorganisms, can improve efficiency in biofuel production and food processing. SSF has applications in converting agricultural residues into valuable products, potentially reducing waste, and enhancing resource utilization in both food and environmental sectors.

Monoclonal antibody production

The production of monoclonal antibodies relies heavily on cell culture techniques. Hybridoma or recombinant cell lines are cultured in controlled bioreactor systems to express and secrete specific antibodies. Optimized culture conditions and feeding strategies are essential to maximize antibody yield and maintain product quality throughout the production process.

Cell and gene therapy

Cell culture techniques are fundamental in developing and producing cell and gene therapies. These methods enable the modification, expansion, and characterization of therapeutic cells. Precise culture conditions are crucial for maintaining cell viability and function throughout the manufacturing process, ensuring the quality and efficacy of the final product.

Stem cell research

Cell culture techniques are essential in stem cell research, supporting the study of embryonic, adult, and induced pluripotent stem cells. These methods enable the isolation, expansion, and precise differentiation of stem cells into specific lineages. Carefully controlled culture environments maintain stem cell properties and guide their development, facilitating advancements in disease modeling, drug development, and regenerative medicine applications.

Cell-based vaccine production

Cell culture methods are critical in developing and manufacturing cell-based vaccines. These techniques allow for the propagation of viruses or the production of viral proteins in controlled, scalable systems. Cell culture approaches offer advantages in vaccine production speed, consistency, and adaptability compared to traditional egg-based methods.

Bacterial-based vaccines

This approach uses bioprocessing to produce vaccines using bacterial systems. Researchers engineer bacteria to produce specific antigens or immunogenic components. The process involves optimizing bacterial growth conditions, antigen expression, and purification methods. Bacterial-based vaccines offer potential advantages in production speed and scalability.

Plasmid DNA production

Microbial bioprocessing enables the production of plasmid DNA, essential for genetic engineering and some vaccine development processes. This technique involves cultivating bacteria, typically E. coli, under controlled conditions to replicate and express specific DNA sequences. The process requires careful optimization of growth conditions, nutrient supply, and extraction methods to ensure high yield and purity of the plasmid DNA. This application supports various biotechnology and pharmaceutical research efforts.

Simultaneous Saccharification and Fermentation (SSF)

SSF is a bioprocessing technique that combines the breakdown of complex carbohydrates into simple sugars (saccharification) with the fermentation of these sugars in a single step. This process, often using engineered microorganisms, can improve efficiency in biofuel production and food processing. SSF has applications in converting agricultural residues into valuable products, potentially reducing waste, and enhancing resource utilization in both food and environmental sectors.

Latest articles

Blog
14 Aug. 20248 min read0
Ready to amplify plasmid (pDNA) in bacteria?

As the workhorses of life, proteins fulfil a variety of functions in our bodies. If their functionality is limited or missing, diseases can arise. Therefore, proteins and their production are a central key to research. Whether protein expression is to be controlled for experimental, biotechnological, or medical applications, the use of cells is often mandatory. Many researchers repeatedly face the same challenge of producing complex target protein fast and cheap. Transient transfection of recombinant plasmids (rpDNA) in mammalian cells is a popular method for this purpose. In the following article, we look at the success story of research assistant Damian von Blarer, who must produce specific regions of the famous SARS-CoV-2 spike protein for efficiency studies of a rapid test – for this he needs plasmids, and we show which questions you need to answer to produce and amplify them easily yourself.

29 Juli 202411 min read0
What is a bioreactor and how does it work?

A bioreactor provides an ideal environment where cells can focus on what they are supposed to do: proliferate. Like lab workers, cells can only produce consistently good work if the conditions are right: it should not be too hot or too cold, and they have to have enough nutritious food and fresh air. In terms of a bioreactor, this means maintaining pH, temperature, ensuring sufficient gas supply and, depending on how the instrument has been configured, adding nutrients for successful maintenance of growth.

29 Juli 202410 min read0
The difference between batch, fed-batch, and continuous processes
Supply of a substrate is a must for any bioprocess, even if it is just mineral salts, light and CO2 for algae. Usually, it is in the form of a sugar, which is either provided just at the start of a process or added over time. The choice of which method to use will depend on the organism, application and final goal.
14 Aug. 20248 min read0
Ready to amplify plasmid (pDNA) in bacteria?

As the workhorses of life, proteins fulfil a variety of functions in our bodies. If their functionality is limited or missing, diseases can arise. Therefore, proteins and their production are a central key to research. Whether protein expression is to be controlled for experimental, biotechnological, or medical applications, the use of cells is often mandatory. Many researchers repeatedly face the same challenge of producing complex target protein fast and cheap. Transient transfection of recombinant plasmids (rpDNA) in mammalian cells is a popular method for this purpose. In the following article, we look at the success story of research assistant Damian von Blarer, who must produce specific regions of the famous SARS-CoV-2 spike protein for efficiency studies of a rapid test – for this he needs plasmids, and we show which questions you need to answer to produce and amplify them easily yourself.

29 Juli 202411 min read0
What is a bioreactor and how does it work?

A bioreactor provides an ideal environment where cells can focus on what they are supposed to do: proliferate. Like lab workers, cells can only produce consistently good work if the conditions are right: it should not be too hot or too cold, and they have to have enough nutritious food and fresh air. In terms of a bioreactor, this means maintaining pH, temperature, ensuring sufficient gas supply and, depending on how the instrument has been configured, adding nutrients for successful maintenance of growth.

29 Juli 202410 min read0
The difference between batch, fed-batch, and continuous processes
Supply of a substrate is a must for any bioprocess, even if it is just mineral salts, light and CO2 for algae. Usually, it is in the form of a sugar, which is either provided just at the start of a process or added over time. The choice of which method to use will depend on the organism, application and final goal.

Ihre Privatsphäre ist uns wichtig

Wir verwenden Cookies, um die Nutzererfahrung zu verbessern. Wir analysieren unseren Datenverkehr, wir personalisieren Inhalte und Anzeigen auf unserer Website und wir bieten Funktionen für soziale Medien. Bestimmte Cookies sind notwendig, damit unsere Website ordnungsgemäß funktioniert und Sie ihre Funktionen nutzen können. Mit Ihrer Zustimmung verwenden wir auch Analyse-Cookies zur Verbesserung unserer Website und Marketing-Cookies, um Werbung und Inhalte auf unserer Website anzuzeigen.
Cookie Einstellungen