Enhancing plasmid DNA (pDNA) production: Innovations in process, manufacturing, and purification techniques
A plasmid DNA production process was performed comparing conventional Erlenmeyer flasks with LB medium and the Thomson’s Ultra Yield® system. E. coli cells were cultivated in both systems in the INFORS HT Multitron incubator shaker, bacterial growth was monitored, and the plasmids were purified at the end of cultivation. Subsequently, the quality of the isolated plasmids was analyzed by HPLC. The combination of the Ultra Yield® flasks with the enriched Plasmid+® medium and the AirOtop® enhanced seal led to higher cell densities and a 21-fold higher amount of plasmid than in Erlenmeyer shake flasks with LB medium.
The demand for plasmid DNA (pDNA) has increased over the last few years as a result of the high demand for gene therapies and DNA vaccinations (pDNA is commonly used because of its high safety). Therefore, an efficient plasmid DNA manufacturing process with increased production of pDNA, with a cost-effective, reproducible, and reliable plasmid DNA purification and quality control system is highly demanded. Plasmids are typically produced in Escherichia coli (E. coli) cells and subsequently isolated by a series of purification steps. Although E. coli mainly produces the more compact supercoiled (SC) plasmid DNA (pDNA) isoform, open circular (OC), nicked, linear and denatured pDNA isoforms are usually also present.
The occurrence of different isoforms can be caused by conformational changes which occur in the bacterial host and during biomass processing (e.g. cell lysis) and plasmid DNA purification steps. Several lines of evidence indicate that high SC levels are required for eliciting an effective immune response and ultimately, protection from infections. Furthermore, the SC pDNA isoform is the desired isoform for transfection as it allows a higher transfection efficiency due to its more compact packing compared to the OC or linear variants. Anion-exchange chromatography (AEC) is a common method to purify SC pDNA from other plasmid isoforms and to remove present impurities derived from the host organism. Ideally, the upstream production process already delivers predominantly high-quality SC pDNA.