Published: 29 Jan. 2021
6 min
6 min read
Tony Allman and Daniel Brücher

History of the Multitron incubator shaker

This article will look at the history and development of a de-facto standard in academic and industrial research laboratories throughput the world, the Multitron incubator shaker. The aim is to show that an initial revolution can lead to evolution, as needs change over time. The fundamentals of a good design can last decades, when new benefits and the best of current technologies are added regularly.

To provide a little context from a historical perspective, the use of orbital shakers for submerged culture in shake flasks dates to the mid 1930’s and concentrated on fungal culture. Key parameters like shaking throw, an orbital movement for good growth and speed range were established early. This made the shake flask useful for seed train production when Stirred Tank Reactors (STR’s) first came into use in the 1940’s for antibiotic production. By the mid 1960’s, the shaker and its temperature-controlled sibling, the incubator shaker, were in common use as a standard laboratory tool for the biosciences. In addition to shake flasks, test tubes and microwell plates were being used with shakers to provide good mixing and oxygen transfer.

1991: Focus on fungal and microbial applications

The Multitron development dates to the 1990’s and came from the need for maximum shake flask capacity for the minimum space in the laboratory. In previous decades, the need for high capacity and throughput was met by free-standing, large shakers housed in constant-temperature rooms. The main application for these units was often large-scale screening for antibiotics. These systems were simple, effective for their main task but extremely inflexible for accommodating several users with different needs e.g., different growth temperatures. The alternative, an incubator shaker was more flexible, but lacked capacity, both in number of flasks and their maximum size.

The first Multitron provided a “game changer” in that it made use of vertical space in the laboratory by stacking up to three incubation chambers. This provided its own design challenges to keep the top deck accessible, providing easy flask handling, prevent any spillages from moving down the stack, and allowing easy access for cleaning and servicing.

Ihre Privatsphäre ist uns wichtig

Wir verwenden Cookies, um die Nutzererfahrung zu verbessern. Wir analysieren unseren Datenverkehr, wir personalisieren Inhalte und Anzeigen auf unserer Website und wir bieten Funktionen für soziale Medien. Bestimmte Cookies sind notwendig, damit unsere Website ordnungsgemäß funktioniert und Sie ihre Funktionen nutzen können. Mit Ihrer Zustimmung verwenden wir auch Analyse-Cookies zur Verbesserung unserer Website und Marketing-Cookies, um Werbung und Inhalte auf unserer Website anzuzeigen.
Cookie Einstellungen