Published: 08 Apr 2021
6 min
6 min read
Tony Allman0

Choosing your new incubator shaker

Buying a new incubator shaker may seem like a simple job. You could select the same model again, the cheapest version, or the shaker with the fastest delivery time. Nothing to worry about as it's a simple standard product, so anything will do the job. However, this approach leaves out a vital factor - what quality of results can you expect at the other end of your bioprocess?

The key factors to consider when purchasing any incubator shaker are summarized below:

  • The capacity needed  
  • The type of culture vessel 
  • Free-standing or stackable systems   
  • Type of organism to be cultivated  
  • The final location 
  • User-friendliness

All these factors should combine to result in a detailed user requirement specification (URS), defining what is needed and allowing meaningful comparisons when choosing between suppliers. Helping you to reach this point is the aim. 

How much capacity do you need?

This covers several separate but related points. As a starting point you should define:

  • Your total requirement as liters of culture, total biomass, or the number of separate experiments for screening and statistical analysis.
  • How will the cultures be grown: volume per well or tube or flask?
  • This should determine capacity in terms of numbers of culture vessels. This is also defined by the filling volume for each vessel. A shake flask is typically filled at around 20% of its total volume but much better oxygenation can be achieved if a filling volume of 10-15% is used. This can double the number of shake flasks required, but increased biomass yield may reduce the number of flasks needed.  
  • Will the containers all be of a single type?
  • For example, a tray of 2 Liter shake flasks, or mixtures e.g. 10 x 250 mL flasks, 2 Falcon-tube racks, plus some 500 mL flasks. This sort of flexibility will need universal trays and may reduce overall capacity slightly while increasing usage.    

 

Which types of culture vessel do you use?

The role of the incubator shaker now includes more than just traditional Erlenmeyer flasks. Shake flasks have several common variants, including the wide, baffled Fernbach flasks, single use flasks as well as special flasks for high-density culture. Racks for test tubes are also commonly used alongside shake flasks. When selecting a dedicated rack make sure that the rack can be angled to improve mixing and encourage better growth. Finally, modern screening and design of experiment (DoE) studies can be performed in various sorts of micro well plates. When this is the main application for a shaker, a dedicated unit with a short 3 mm shaking throw, humidification and special trays can both increase the number of experiments per run and improve the quality of the results.    

Typical culture vessels for incubator shakers: 

  • Shake flasks 
  • Test tubes 
  • Micro well plates

The total number and type of culture vessel, including weight, height, and distribution on the shaker tray are required to determine the number of shaker units required, either stacked or as single systems. 


Do you need a single system or a stackable solution?

How will the required capacity be “packaged”? A multiple deck system can accommodate different operating conditions, operational parameters and uses all within one unit. However, this will be larger and may not be optimal in terms of use of space or varying needs. Lower capacity units can be stacked in more locations or mounted under a laboratory bench. Other factors such as total weight, working height and the ability to split up and move individual units can also influence this decision.    

 

Which type of organism will be cultured?

This is the critical point for the actual users (who may or may not be the specifiers). The type of organism to be cultured can have major significance for the specifications of the incubator shaker. For bacteria and yeast, a standard incubator shaker with a 25 mm throw and basic temperature control will do the job. Insect and mammalian cell cultures are at the opposite end of the requirement spectrum. They are more fragile in terms of response to shear stress, affected by more environmental conditions and more prone to contamination.  

The key parameters to look out for include: 

  • Shaking throw 
  • Shaking speed 
  • Temperature range 
  • Humidification 
  • CO2 Control 
  • Light  

Each of these parameters has its own acceptance criteria. Have a look at our blog post: 5 Key Factors for Reliable Screening Results in Incubator Shakers to learn more about drive capabilities, temperature uniformity and the different types of humidification systems available on the market.


What is the final location of the incubator shaker?

This is also a multi-faceted decision. More than any other consideration, it’s concerned with the practicalities and will often be constrained by what is possible for a given situation. Key questions to answer include: 

Will the incubator shaker be located on the ground floor or on upper stories of a building? 

Stackable systems can weigh half a metric ton or more, and special consideration needs to be given to floor loading. Splitting the weight into smaller units may prove more cost effective and flexible. Reliable total dimensions, weights and visual inspection of possible locations are the key ingredients for success.    

Will the final location be suitable?  

This covers aspects such as adequate ventilation all around a system. Space may be needed for gas cylinders or external steam generators for humidification. Allow space for gas cylinders or external steam generators for humidification. Also, consider the space required (horizontal or vertical) for the opening of incubation chamber doors.

Is the location able to be kept clean and disinfected easily?  

A common source of contamination within the incubation chamber will be the local environment. Air moves through the shaker, which may have a high load of bacterial or fungal spores. Leaving room for good air circulation and a design created for easy cleaning the incubation chamber can help reduce this risk.  



What about usability aspects?

The incubator shaker supplied must be usable without major alteration of good laboratory practices. Usability aspects include ergonomic aspects, safety considerations and ease of handling. These points can provide a useful distinction between suppliers if all the basic specifications can be met. Examples include: 

Ergonomic design 

  • Easy access to the shake flasks. The opportunity to pull a tray out to exchange flasks without having to totally remove it fully can be a great advantage. 
  • For a stacked system, the top deck should be accessible to operators without the need for steps or a kick stool.   


Ease of handling 

  • Easy cleaning. If the incubation chamber can be quickly cleaned and spills wiped up quickly, this is more likely to be done by operators.  
  • Special options to improve culture outcomes by minimizing the need to open the incubation chamber. This can include biomass estimation to eliminate sampling, automated addition of feed/inductant and analysis of exit gas from flasks. 


Safety considerations 

  • Automatic tray locking, so shaking cannot begin unless the shaker tray is locked into place.
  • Auto-restart when the incubator chamber door is closed. This stops the operator forgetting to re-start shaking. A soft start/stop system will ensure  smooth progress to the operating speed. 

 

Summary   

The need for a quality solution to your incubator shaker needs cannot be stressed too highly. It forms the base on which all additional production, scale-up and experimental research is based. The influences which poor control, construction and design can have on culture conditions argue for proven equipment. 

Producing a full user requirement specification (URS) for purchase of incubator shakers allows meaningful comparisons between suppliers and prompts a review of both current and future needs. Apart from the equipment needs, other factors such as delivery time, warranty, support, and quality assessments can be added. Special options and qualification for regulatory approval can be added for advanced applications.      

The main elements of an incubator shaker URS will include:

  • Capacity – in terms of numbers, sizes, and overall quantities.
  • Choice of culture vessels– usually shake flasks or micro-well plates.
  • Single or multi-deck solution requirements.
  • Parameter specifications according to the organism to be cultured. This may be the longest and most detailed part of the URS.
  • Location aspects, such as total weight, size and required environmental conditions.
  • Usability aspects. Some of these may be integral to the design of the incubator shaker or additional options.  

Did you like this article?Leave us a rating!

1
2
3
4
5
Average: 0/5

Comments(0)

Related articles

Blog
05 Dec 20243 min read0
Back to Basics: Understanding UV decontamination in incubator shakers

Maintaining a sterile environment is essential in bioprocess laboratories, particularly when working with sensitive cell cultures or microbial samples. Contamination not only jeopardizes experimental results, but it can also lead to costly downtime and wasted resources. In this first installment of our Back to Basics blog series, we focus on the role of UV decontamination in incubator shakers and how it serves as an effective risk mitigation strategy. 

14 Nov 20246 min read50
The lab partner you can count on: Multitron incubator shaker

In the fast-paced world of bioprocessing, having reliable lab equipment is critical for research and process development success. The Multitron incubator shaker has been designed with these demands in mind, offering precision and efficiency that directly address the challenges scientists face in their labs. Whether you are optimizing culture conditions or scaling up processes, the Multitron shaker provides the tools you need to advance your research with confidence.

23 Oct 20249 min read40
Optimizing HEK293 cell cultures for gene therapy applications: the role of incubator flexibility

Gene therapy is a promising approach for treating various genetic disorders and diseases. A critical component of gene therapy is the production of viral vectors, which serve as delivery vehicles for therapeutic genes. Human Embryonic Kidney 293 (HEK293) cells have become a widely used platform for viral vector production due to their efficiency in transfection and ability to support viral replication. However, optimizing HEK293 cell cultures for large-scale production of viral vectors remains a challenge in making gene therapies more accessible and cost-effective.

05 Dec 20243 min read0
Back to Basics: Understanding UV decontamination in incubator shakers

Maintaining a sterile environment is essential in bioprocess laboratories, particularly when working with sensitive cell cultures or microbial samples. Contamination not only jeopardizes experimental results, but it can also lead to costly downtime and wasted resources. In this first installment of our Back to Basics blog series, we focus on the role of UV decontamination in incubator shakers and how it serves as an effective risk mitigation strategy. 

14 Nov 20246 min read50
The lab partner you can count on: Multitron incubator shaker

In the fast-paced world of bioprocessing, having reliable lab equipment is critical for research and process development success. The Multitron incubator shaker has been designed with these demands in mind, offering precision and efficiency that directly address the challenges scientists face in their labs. Whether you are optimizing culture conditions or scaling up processes, the Multitron shaker provides the tools you need to advance your research with confidence.

23 Oct 20249 min read40
Optimizing HEK293 cell cultures for gene therapy applications: the role of incubator flexibility

Gene therapy is a promising approach for treating various genetic disorders and diseases. A critical component of gene therapy is the production of viral vectors, which serve as delivery vehicles for therapeutic genes. Human Embryonic Kidney 293 (HEK293) cells have become a widely used platform for viral vector production due to their efficiency in transfection and ability to support viral replication. However, optimizing HEK293 cell cultures for large-scale production of viral vectors remains a challenge in making gene therapies more accessible and cost-effective.

We care about your privacy

We use cookies to improve user experience. We analyse our traffic, we personalise content and ads on our website, and we provide social media features. Certain cookies are necessary for our website to work properly and to enable you to use its features. With your consent, we also use analytics cookies to improve our website and marketing cookies to display advertisements and content on our website. 
Cookie settings