In a study from the University of Aveiro, researchers leveraged the INFORS HT Minifors bench-top bioreactor to optimize recombinant laccase production in Komagataella phaffii. By fine-tuning cultivation conditions, they scaled laccase production and demonstrated its stability and effectiveness as a biocatalyst. Notably, this laccase was used to assist dopamine polymerization, achieving an innovative polydopamine coating on filter paper, an exciting advance in enzyme applications for material science.
Publicaciones
Topic
Product
In a study from the University of Aveiro, researchers leveraged the INFORS HT Minifors bench-top bioreactor to optimize recombinant laccase production in Komagataella phaffii. By fine-tuning cultivation conditions, they scaled laccase production and demonstrated its stability and effectiveness as a biocatalyst. Notably, this laccase was used to assist dopamine polymerization, achieving an innovative polydopamine coating on filter paper, an exciting advance in enzyme applications for material science.
Researchers from the University of São Paulo have developed an innovative two-stage anaerobic digestion process that enhances methane production from sugarcane vinasse. Their approach, which integrates a fermentative-sulfidogenic stage, boosts biogas quality, lowers costs, and eliminates the need for chemical additives. This promising solution could revolutionize bioenergy recovery in sugarcane biorefineries.
Researchers from the Institute of Bioprocess Engineering and Pharmaceutical Technology at the University of Applied Sciences Mittelhessen have made strides in chemoorganotrophic electrofermentation using Cupriavidus necator. By experimenting with different redox mediators, they identified ferricyanide as a key player in enhancing anodic respiration. With the INFORS HT Multitron providing precise environmental control, the team achieved remarkable current densities, offering a promising solution to the challenges of oxygen-driven fermentation systems.
Researchers from the University of Athens have successfully harnessed crude glycerol, a biodiesel by-product, as a substrate for producing valuable compounds like polyols and yeast biomass. Their study highlights the adaptability of wild-type Yarrowia lipolytica strains under low pH, low temperature, and non-aseptic conditions, offering a sustainable approach to bio-based production.
Researchers at the University of Tartu, Institute of Bioengineering used adaptive laboratory evolution (ALE) to evolve Clostridium autoethanogenum into a faster-growing, yeast extract-free strain named LAbrini. This strain demonstrates improved robustness and performance in continuous bioreactor cultures, offering new potential for sustainable production of renewable chemicals and fuels.
A study conducted by LanzaTech, published in Biotechnology for Biofuels, explores how Clostridium autoethanogenum (an acetogenic bacterium) adapts to various hydrogen ratios in its feedstock. The focus of this study is to enhance carbon capture efficiency with a spotlight on CO₂ conversion. This research unveils the metabolic adaptations of C. autoethanogenum and paves the way for innovative bioengineering strategies to maximize CO₂ conversion in industrial applications.
This study, published on ScienceDirect, aimed to revolutionize bioproduction by developing a cost-effective, robust, and scalable platform using a novel approach with C. glutamicum and UF-SSL. This research eliminates costly media additives and energy-intensive detoxification steps, paving the way for more efficient and sustainable industrial ethanol production.
Researchers from the University of Delaware, Departments of Chemical and Biomolecular Engineering and Electrical and Computer Engineering have made strides in enhancing the resilience of Chinese hamster ovary (CHO) cells used in biopharmaceutical production. By employing the INFORS HT Multitron incubator shaker, they exposed CHO cells to stress conditions commonly encountered during manufacturing, such as elevated levels of ammonia, lactate, and osmolality. Through comprehensive transcriptomic analysis, the team identified 199 genes exhibiting bistable expression, with seven emerging as prime candidates for engineering stress-resistant cell lines. This research holds promise for optimizing cell health and boosting productivity in large-scale bioreactor operations.
Researchers from the University of Delaware's Department of Chemical and Biomolecular Engineering have developed a site-specific integration (SSI) system to streamline CHO cell line development for monoclonal antibody (mAb) production. Using the INFORS HT Multitron incubator shaker, they cultivated cells under optimized conditions to evaluate a recombinase-mediated cassette exchange (RMCE) system that enables high-throughput transgene selection without cell sorting. Their approach resulted in a 7- to 11-fold increase in mAb productivity, offering a faster and more reliable method for biopharmaceutical manufacturing.
Researchers from Albert Einstein College of Medicine, Adimab LLC, and the U.S. Army Medical Research Institute of Infectious Diseases explored how combining neutralizing antibodies targeting different parts of the SARS-CoV-2 spike protein can help prevent escape mutants. Using the INFORS HT Multitron incubator shaker, they cultivated cells under controlled conditions to test antibody effectiveness. Their approach could strengthen antibody-based COVID-19 treatments by improving effectiveness and reducing resistance.
Researchers from the University of São Paulo have developed an innovative two-stage anaerobic digestion process that enhances methane production from sugarcane vinasse. Their approach, which integrates a fermentative-sulfidogenic stage, boosts biogas quality, lowers costs, and eliminates the need for chemical additives. This promising solution could revolutionize bioenergy recovery in sugarcane biorefineries.
Researchers from the Institute of Bioprocess Engineering and Pharmaceutical Technology at the University of Applied Sciences Mittelhessen have made strides in chemoorganotrophic electrofermentation using Cupriavidus necator. By experimenting with different redox mediators, they identified ferricyanide as a key player in enhancing anodic respiration. With the INFORS HT Multitron providing precise environmental control, the team achieved remarkable current densities, offering a promising solution to the challenges of oxygen-driven fermentation systems.
Researchers from the University of Athens have successfully harnessed crude glycerol, a biodiesel by-product, as a substrate for producing valuable compounds like polyols and yeast biomass. Their study highlights the adaptability of wild-type Yarrowia lipolytica strains under low pH, low temperature, and non-aseptic conditions, offering a sustainable approach to bio-based production.
Researchers at the University of Tartu, Institute of Bioengineering used adaptive laboratory evolution (ALE) to evolve Clostridium autoethanogenum into a faster-growing, yeast extract-free strain named LAbrini. This strain demonstrates improved robustness and performance in continuous bioreactor cultures, offering new potential for sustainable production of renewable chemicals and fuels.
A study conducted by LanzaTech, published in Biotechnology for Biofuels, explores how Clostridium autoethanogenum (an acetogenic bacterium) adapts to various hydrogen ratios in its feedstock. The focus of this study is to enhance carbon capture efficiency with a spotlight on CO₂ conversion. This research unveils the metabolic adaptations of C. autoethanogenum and paves the way for innovative bioengineering strategies to maximize CO₂ conversion in industrial applications.
This study, published on ScienceDirect, aimed to revolutionize bioproduction by developing a cost-effective, robust, and scalable platform using a novel approach with C. glutamicum and UF-SSL. This research eliminates costly media additives and energy-intensive detoxification steps, paving the way for more efficient and sustainable industrial ethanol production.
Researchers from the University of Delaware, Departments of Chemical and Biomolecular Engineering and Electrical and Computer Engineering have made strides in enhancing the resilience of Chinese hamster ovary (CHO) cells used in biopharmaceutical production. By employing the INFORS HT Multitron incubator shaker, they exposed CHO cells to stress conditions commonly encountered during manufacturing, such as elevated levels of ammonia, lactate, and osmolality. Through comprehensive transcriptomic analysis, the team identified 199 genes exhibiting bistable expression, with seven emerging as prime candidates for engineering stress-resistant cell lines. This research holds promise for optimizing cell health and boosting productivity in large-scale bioreactor operations.
Researchers from the University of Delaware's Department of Chemical and Biomolecular Engineering have developed a site-specific integration (SSI) system to streamline CHO cell line development for monoclonal antibody (mAb) production. Using the INFORS HT Multitron incubator shaker, they cultivated cells under optimized conditions to evaluate a recombinase-mediated cassette exchange (RMCE) system that enables high-throughput transgene selection without cell sorting. Their approach resulted in a 7- to 11-fold increase in mAb productivity, offering a faster and more reliable method for biopharmaceutical manufacturing.
Researchers from Albert Einstein College of Medicine, Adimab LLC, and the U.S. Army Medical Research Institute of Infectious Diseases explored how combining neutralizing antibodies targeting different parts of the SARS-CoV-2 spike protein can help prevent escape mutants. Using the INFORS HT Multitron incubator shaker, they cultivated cells under controlled conditions to test antibody effectiveness. Their approach could strengthen antibody-based COVID-19 treatments by improving effectiveness and reducing resistance.