Agitador orbital de bancada
Celltron
Agitador orbital de bancada
Celltron
O shaker perfeito para complementar sua incubadora de CO2
Apresente ao seu laboratório os benefícios da tecnologia de agitação que reduz os riscos para suas células em uma incubadora de CO2 existente. O Celltron é um shaker compacto, econômico e eficiente em termos de energia que pode ser facilmente incorporado ao espaço existente em seu laboratório.
Vantagens
O acionamento magnético com aceleração suave proporciona consumo mínimo de energia e baixa entrada de calor na incubadora estática.
O acionamento magnético com aceleração suave proporciona consumo mínimo de energia e baixa entrada de calor na incubadora estática.
Especificações do produto
- Adequado para sua incubadora de CO2 existente com a rotação dentro das dimensões da base (L x P x A): 450 x 380 x 90 mm
- Unidade de controle externa, montada magneticamente na parte externa da incubadora, com operação intuitiva, controle e monitoramento precisos de parâmetros e alarmes.
- Fixe facilmente uma variedade de vasos de cultura com o Sticky Stuff, um tapete adesivo para sua bandeja do shaker
- Obtenha um crescimento significativamente melhor e escalável em comparação com as culturas de células estáticas, com melhor transferência de oxigênio e disponibilidade homogênea dos nutrientes no meio de cultura.
Product downloads
Publicações relacionadas
Todas as publicaçõesResearchers from the University of Delaware, Departments of Chemical and Biomolecular Engineering and Electrical and Computer Engineering have made strides in enhancing the resilience of Chinese hamster ovary (CHO) cells used in biopharmaceutical production. By employing the INFORS HT Multitron incubator shaker, they exposed CHO cells to stress conditions commonly encountered during manufacturing, such as elevated levels of ammonia, lactate, and osmolality. Through comprehensive transcriptomic analysis, the team identified 199 genes exhibiting bistable expression, with seven emerging as prime candidates for engineering stress-resistant cell lines. This research holds promise for optimizing cell health and boosting productivity in large-scale bioreactor operations.
Researchers from the University of Delaware's Department of Chemical and Biomolecular Engineering have developed a site-specific integration (SSI) system to streamline CHO cell line development for monoclonal antibody (mAb) production. Using the INFORS HT Multitron incubator shaker, they cultivated cells under optimized conditions to evaluate a recombinase-mediated cassette exchange (RMCE) system that enables high-throughput transgene selection without cell sorting. Their approach resulted in a 7- to 11-fold increase in mAb productivity, offering a faster and more reliable method for biopharmaceutical manufacturing.
Researchers from Albert Einstein College of Medicine, Adimab LLC, and the U.S. Army Medical Research Institute of Infectious Diseases explored how combining neutralizing antibodies targeting different parts of the SARS-CoV-2 spike protein can help prevent escape mutants. Using the INFORS HT Multitron incubator shaker, they cultivated cells under controlled conditions to test antibody effectiveness. Their approach could strengthen antibody-based COVID-19 treatments by improving effectiveness and reducing resistance.
Researchers from the University of Delaware, Departments of Chemical and Biomolecular Engineering and Electrical and Computer Engineering have made strides in enhancing the resilience of Chinese hamster ovary (CHO) cells used in biopharmaceutical production. By employing the INFORS HT Multitron incubator shaker, they exposed CHO cells to stress conditions commonly encountered during manufacturing, such as elevated levels of ammonia, lactate, and osmolality. Through comprehensive transcriptomic analysis, the team identified 199 genes exhibiting bistable expression, with seven emerging as prime candidates for engineering stress-resistant cell lines. This research holds promise for optimizing cell health and boosting productivity in large-scale bioreactor operations.
Researchers from the University of Delaware's Department of Chemical and Biomolecular Engineering have developed a site-specific integration (SSI) system to streamline CHO cell line development for monoclonal antibody (mAb) production. Using the INFORS HT Multitron incubator shaker, they cultivated cells under optimized conditions to evaluate a recombinase-mediated cassette exchange (RMCE) system that enables high-throughput transgene selection without cell sorting. Their approach resulted in a 7- to 11-fold increase in mAb productivity, offering a faster and more reliable method for biopharmaceutical manufacturing.
Researchers from Albert Einstein College of Medicine, Adimab LLC, and the U.S. Army Medical Research Institute of Infectious Diseases explored how combining neutralizing antibodies targeting different parts of the SARS-CoV-2 spike protein can help prevent escape mutants. Using the INFORS HT Multitron incubator shaker, they cultivated cells under controlled conditions to test antibody effectiveness. Their approach could strengthen antibody-based COVID-19 treatments by improving effectiveness and reducing resistance.
Depoimentos de clientes
Manfred Sander, Dipl.-Ing. (FH)Departamento Especializado de Gerenciamento de Equipamentos, Universitätsklinikum Erlangen
Artigos relacionados
BlogIn bioprocessing, selecting the right shaker parameters is essential for optimizing the growth and productivity of various organisms, including bacteria, yeast, and mammalian cells. By fine-tuning these parameters, scientists can create ideal environments for cultivation, maximizing process efficiency and reproducibility. In this installment of our Back to Basics blog series, we focus on how INFORS HT incubator shakers enable better control and flexibility to meet diverse cultivation needs.
Gene therapy is a promising approach for treating various genetic disorders and diseases. A critical component of gene therapy is the production of viral vectors, which serve as delivery vehicles for therapeutic genes. Human Embryonic Kidney 293 (HEK293) cells have become a widely used platform for viral vector production due to their efficiency in transfection and ability to support viral replication. However, optimizing HEK293 cell cultures for large-scale production of viral vectors remains a challenge in making gene therapies more accessible and cost-effective.
Selecting the correct orbital throw for your incubator shaker is critical for achieving optimal results in cell culture, bacterial growth, and other bioprocessing applications. In this installment of the Back to Basics series, we will explore what orbital throw is, why it matters, and how to make the best choice for your experiments.
In bioprocessing, selecting the right shaker parameters is essential for optimizing the growth and productivity of various organisms, including bacteria, yeast, and mammalian cells. By fine-tuning these parameters, scientists can create ideal environments for cultivation, maximizing process efficiency and reproducibility. In this installment of our Back to Basics blog series, we focus on how INFORS HT incubator shakers enable better control and flexibility to meet diverse cultivation needs.
Gene therapy is a promising approach for treating various genetic disorders and diseases. A critical component of gene therapy is the production of viral vectors, which serve as delivery vehicles for therapeutic genes. Human Embryonic Kidney 293 (HEK293) cells have become a widely used platform for viral vector production due to their efficiency in transfection and ability to support viral replication. However, optimizing HEK293 cell cultures for large-scale production of viral vectors remains a challenge in making gene therapies more accessible and cost-effective.
Selecting the correct orbital throw for your incubator shaker is critical for achieving optimal results in cell culture, bacterial growth, and other bioprocessing applications. In this installment of the Back to Basics series, we will explore what orbital throw is, why it matters, and how to make the best choice for your experiments.
Ofertas ideais para otimizar ainda mais seu fluxo de trabalho de bioprocessos
Nossos agitadores de laboratório se destacam pelo design inteligente e ergonômico e pela utilização das mais recentes tecnologias.
Aumente o desempenho de seu shaker, minimize o tempo de inatividade e maximize a segurança.
Aprimore seu shaker de laboratório com uma ampla variedade de bandejas, suportes e tapetes adesivos.
Nossos agitadores de laboratório se destacam pelo design inteligente e ergonômico e pela utilização das mais recentes tecnologias.
Aumente o desempenho de seu shaker, minimize o tempo de inatividade e maximize a segurança.
Aprimore seu shaker de laboratório com uma ampla variedade de bandejas, suportes e tapetes adesivos.